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The paths followed by individual fluid particles can' be extremely complicated even 
in smooth laminar flows. Such chaotic advection causes mixing of the fluid. This 
phenomenon is studied analytically for a class of spatially periodic flows comprising 
a basic flow of two-dimensional (or axisymmetric) counter-rotating vortices in a 
layer of fluid, and modulated by a perturbation which is periodic in time and/or 
space. Examples of this type of flow include B6nard-convection just above the point 
of instability of two-dimensional roll cells, and Taylor vortex flow between concentric 
rotating cylinders. The transport of chaotically advected particles is modelled as a 
Markov process. This predicts diffusion-like mixing, and provides an expression for 
the diffusion coefficient. This expression explains some features of experimental 
results reported by Solomon & Gollub (1988) : its accuracy is investigated through a 
detailed comparison with numerical results from a model of wavy Taylor vortex flow. 
The approximations used in the analysis are equivalent to those used to obtain the 
quasi-linear result for diffusion in the standard map. 

i 

1. Introduction 
Chaotic advection in fluid flow has been the subject of much research in recent 

years. This phenomenon manifests itself when one studies the paths, x( t ) ,  followed by 
individual fluid particles. These are given by 

s 

where u(x ,  t )  is the Eulerian velocity field of the fluid. Then the theory of dynamical 
systems shows that the solutions may be chaotic, even for simple (albeit nonlinear) 
functions u. Thus chaotic particle paths may occur even in smooth laminar flows. 
This was first described by Arnol'd (1965) and Hknon (1966), and called chaotic 
advection by Aref (1984). Recent reviews of the phenomenon have been provided by 
Ottino (1989, 1990). 

The effect of chaotic advection is to cause mixing of the fluid. This is illustrated 
in, for example, the theoretical work of Dombre et al. (1986), and the experimental 
work of Chaiken et al. (1986) and Ottino et al. (1988); for further discussion and 
references see, again, Ottino (1989, 1990). The nature of this mixing in a simple model 
of wavy Taylor vortex flow between concentric rotating cylinders was studied 
numerically by Broomhead & Ryrie (1988). In the basic flow of steady, axisymmetric 
vortices there are only well-ordered particle paths, confined to invariant toroidal 
surfaces. However, when a time-periodic perturbation, such as one which might 
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model an instability of this flow, is added, the dividing streamlines between adjacent 
vortices are broken. This leads to chaotic advection, and transport of particles 
between neighbouring vortices. Broomhead & Ryrie showed numerically that the 
transport of particles along the length of the cylinders can be characterized as a 
diffusion process, with diffusion coefficient varying with the strength of the 
perturbation. Note that this diffusion-like behaviour is of macroscopic origin, and 
occurs even in the absence of molecular diffusion. 

Similar results were found by Solomon & Gollub (1988), who studied particle 
transport experimentally and numerically in two-dimensional, time-dependent 
Rayleigh-BBnard convection. This flow is qualitatively similar to the Taylor vortex 
flow studied by Broomhead & Ryrie (1988). In the basic steady flow particles are 
confined to the closed streamlines of two-dimensional roll cells : the time-dependent 
perturbation breaks dividing streamlines between adjacent cells, allowing transport 
of particles along the layer. Solomon & Gollub (1988) found that the transport could 
be described as a one-dimensional diffusive process ; moreover that the effective 
diffusion coefficient varied linearly with the strength of the time-dependent 
component of the flow. Their results were independent of the molecular diffusivity of 
the tracer particles used, indicating that mixing by chaotic advection is the 
dominant effect over the range of molecular diffusivities which they used. 

Further numerical studies of transport due to chaotic advection in similar types of 
flows have been carried out by Weiss & Knobloch (1989) and Cox et al. (1990). These 
were motivated, respectively, by modulated travelling waves in binary-fluid 
mixtures, and by Rossby wave flow in the atmosphere. However, unlike the 
examples considered by Broomhead & Ryrie (1988) and Solomon & Gollub (1988), 
these flows exhibit a net flux of fluid along the layer. This flux manifests itself in the 
basic flow by the presence of a unidirectional stream winding between the vortices. 
The effect of this net flux upon the transport properties of the flow is to produce 
anomalous diffusion, whereby the mean-square displacement of particles, Az2(t) ,  
satisfies 

Az2(t) - t” as t - t c o ,  

where v > 1 ; for diffusion-limited transport v E 1 ,  
The aim of this paper is to demonstrate the origin of the diffusion-like transport 

observed in the above studies of flows with no net flux, and to obtain an approximate 
expression for the diffusion coefficient. Whereas most previous investigations have 
been essentially numerical, by making appropriate approximations we are able to 
treat the problem analytically. The flow is assumed to consist of a single (infinite) row 
of cells (or counter-rotating vortices), subject to a temporally periodic perturbation. 
This general formulation embraces a wide range of flows, including the two examples 
of Taylor-vortex flow and BBnard convection mentioned above. Following ideas used 
by Meiss and co-workers (MacKay, Meiss & Percival 1984; Meiss 1986; Meiss & Ott  
1986) in their studies of transport in two-dimensional mappings, we calculate the flux 
of particles across cell boundaries, and model the transport as a Markov process. This 
indeed predicts diffusion-like transport, and provides an expression for the effective 
diffusion coefficient. . This analytic expression is compared with numerical results 
from the model studied by Broomhead & Ryrie (1988). Additionally, the Markov 
model suggests that the anomalous diffusion observed in the cases of flows with non- 
zero net flux may be caused by shear within the flows, rather than by the net flux 
itself. 

During the course of this work we learnt that similar ideas had independently been 
applied to the study of chaotic advection in fluid flows by Rom-Kedar (1989) (see 
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also Rom-Kedar, Leonard & Wiggins 1990). However, there the detailed structure of 
the transfer mechanism across broken cell boundaries, and of the trapping and escape 
of particles is investigated. In contrast, in this paper, by adopting the Markov model, 
we ignore many details of the transport process in favour of obtaining a simple first 
approximation to the diffusion coefficient. 

The weakness of the Markov model approximation lies in assuming that the 
particles ‘forget’ their previous history after just one period of the flow. However, 
since it is well known that the autocorrelation functions of chaotic signals decay to 
zero (cf. Ottino 1989, p. 129), we expect this approximation to be good in cases where 
the timescale of this decay is sufficiently small compared with the period of the flow. 
It is important to remember though, that in other cases correlation effects may be 
important and cause discrepancies between our approximate analytic result and the 
true value of the diffusion coefficient. Some discrepancies which are probably 
attributable to this cause will be seen, as well as some remarkably good agreement, 
in our comparison between the analytic approximation and numerical results. The 
complexity of these higher-order correlation effects can be seen in the work of Rom- 
Kedar (1989) and Rom-Kedar et al. (1990). To include them in a calculation of the 
diffusion coefficient is beyond the scope of the present work. As indicated above, we 
choose instead to ignore them in order that we may obtain a simple first-order 
approximation. 

Although the investigation of transport due to chaotic particle paths is fairly new 
in the context of fluid dynamics, transport properties of chaotic two-dimensional, 
area-preserving maps have been studied €or some time (cf. Lichtenberg & 
Lieberman 1983,1988; MacKay et al. 1984; Meiss 1986, Meiss & Ot t  1986). When we 
recall that for convenience a flow is often reduced to such a map - the Poincar4 map 
which in periodic two-dimensional flow of an incompressible fluid, for example, 
relates the positions of fluid particles at  successive time intervals equal to one period 
of the flow - we might expect that the methods used in the studies of mappings could 
be applied directly to the case of fluid flow. However, there are some important 
differences. First, the explicit form of the Poincar6 map cannot, in general, be 
obtained from the flow field. Secondly, as Weiss & Knobloch (1989) discuss, the 
mappings are usually expressed in action-angle coordinates, with the diffusion 
occurring in the action variable. In contrast, the fluid flow is not normally in action- 
angle form, and the diffusion occurs in real space. Although these differences prevent 
direct application of the methods used in the study of mappings, they do not appear 
to significantly affect the diffusion process, and many features of diffusion in 
mappings are seen in the numerical results of diffusion in chaotic fluid flows. 
Moreover, as our appeal to the ideas of Meiss and co-workers exemplifies, the 
philosophy of the methods can often be of use. 

Of particular interest is the work on diffusion in the ‘standard map’: this is 
reviewed by Lichtenberg & Lieberman (1983). An analytic expression for the 
diffusion coefficient can be derived in the form of an infinite series. A first 
approximation, the ‘quasi-linear result ’, is found by assuming that particles have no 
memory of their past history. This is equivalent to the Markov process approximation 
which we adopt in this paper. Higher-order corrections lead to oscillations about the 
quasi-linear result, which decay as the parameter governing the nonlinearity of the 
map increases to infinity. Our results for the model of wavy Taylor-vortex flow show 
a similar behaviour : the numerical results oscillate about the analytic approximation 
for small perturbations, but tend to the same value as the amplitude of the 
perturbation becomes ‘large ’. 
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1. General topological form of the streamlines in the unperturbed flow ( B  = 0). Note that 
(counter-rotating) cells in each spatial period of the flow need not be of the same shape or 

It is important to recognize that throughout this paper we ignore the effects of 
molecular diffusion. Of course, molecular diffusion will always be present in real fluid 
flows. Nevertheless, the work of Solomon & Gollub (1988) suggests that its effects are 
small compared with those of chaotic advection in a t  least some cases of practical 
interest. Additionally, the rapid mixing caused by the chaotic advection should not 
be confused with the enhancement of molecular diffusion by the spatial structure of 
axisymmetric Taylor vortices, and steady Rayleigh-Be'nard convection. This 
phenomenon has been investigated by Sagues & Horsthemke (1986) and Young, 
Pumir & Pomeau (1989). Once molecular diffusion has carried particles across one 
dividing streamline, they are rapidly transported by the flow to  the next vortex 
boundary, which again can only be crossed by molecular diffusion. This contrasts 
with the cases we study here, in which the breaking of the symmetry of the flow 
causes the dividing streamlines themselves to be broken ; it  is the action of the flow 
itself which carries particles between adjacent vortices, even when there is no 
molecular diffusion. 

2. Description of the flow 
Consider a steady two-dimensional flow of an incompressible fluid, such that the 

streamlines are topologically equivalent to those shown in figure 1 (three-dimensional 
flows in which the velocity field is independent of the third spatial coordinate, z, can 
be analysed in a similar way, as will be discussed in 54). The flow is bounded in y ,  and 
consists of a series of cells periodically spaced in x. Ideal fluid particles follow paths 
x( t )  = ( x ( t ) ,  Y ( t ) )  given by 

where $(x ,  y ) ,  the stream function, has period X in x, and satisfies 

$ ( X , O )  = $(X> 1) = 0 

for all x ,  in order that  there be no flow across the boundaries y = 0 and y = 1, 
and no net flux along the layer. Stagnation points lie a t  periodic intervals along the 
boundaries, where V$ = 0. These stagnation points are of saddle type: each has a 
stable manifold comprising all initial positions which are asymptotic to the saddle 
point as t + + co , and an unstable manifold comprising all initial positions asymptotic 
to the saddle point as t 4- 00. Thus the stable and unstable manifolds correspond, 
respectively, to curves of inflow and outflow of fluid. Note that particles are unable 
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to cross such manifolds. This property is fundamental to  the mechanism whereby a 
small perturbation to equations (2.1) may give rise to flow with chaotic particle 
paths, and to our analysis of the resultant transport. I n  this particular case, the 
manifolds of adjacent stagnation points coincide, joining these points along the 
boundarics of the flow, and along the difiding streamlines which separate 
neighbouring vortices. Thus each cell boundary comprises a ‘ heteroclinic cycle ’. 
Such a configuration is structurally unstable and likely to be broken by small 
perturbations of the system. 

When the forcing of the fluid system is increased beyond a critical value, the basic 
flow described above often becomes unstable to a time-periodic perturbation (cf. 
Davcy, DiPrima & Stuart 1968; Clever & Busse 1974). Then particles paths arc 
described by equations of the form : 

where g has period X in x, and T in t .  This form of the perturbation automatically 
satisfies the continuity equation for the incompressible fluid. I n  addition we impose 
g(x ,  0, t )  = g(x, 1, t )  = 0 for all x and t ,  in order to preserve the boundaries at y = 0 and 
y = 1, and the condition of no net flux along the x-axis. Standard methods are 
available to study the solutions to equations of this form. We briefly outline those 
results necessary for our discussion of diffusion in the perturbed flow. For further 
details see, for example, Guckenheimer & Holmes (1983), or, for a discussion in the 
context of wavy Taylor vortex flow, Broomhead & Ryrie (1988). 

Solutions to equations (2.2) are conveniently visualized by use of a Poincard map. 
This map relates the positions of particles after intervals of time equal to  one period 
of the perturbation : it is equivalent to stroboscopically illuminating the flow. Since 
the fluid is incompressible, the Poincark map is area-preserving. 

The stagnation points on the boundaries of the unperturbed flow correspond to  
fixed points of the Poincard map. It can be shown that, for small enough 8, these 
survive in the Poincard map of the perturbed flow (though they will in general be 
displaced by a distance of order c), and retain the same, saddle-type, stability. 
Correspondingly, the stagnation points of the basic flow are replaced by periodic 
orbits in the perturbed flow. The boundary conditions ensure that these fixed points 
of the perturbed map remain in the boundaries y = 0 and y = 1 of the flow. They 
have stable and unstable manifolds defined similarly to  those of the basic steady 
flow, but with n, the number of iterations of the map, taking the role of time, t .  The 
boundary conditions ensure that half of these manifolds lie along the fluid boundaries 
and coincide as in the case of c = 0. No such constraints act on the manifolds which 
enter into the body of the fluid : in general these no longer coincide, thus causing the 
dividing streamlines between adjacent cells to be broken, and allowing the migration 
of particles along the length of the layer. However, the condition of no net flux along 
the x-axis does require these perturbed manifolds to  intersect a t  least once (cf. Cox 
et al. 1990). It is easy to show that in this case they must intersect an  infinite number 
of times, and so wind ‘wildly ’ in space : this is the origin of the chaotic advection in 
this class of flow. 

Figure 2 shows schematically these perturbed manifolds in a typical case. On 



6 S. C. Ryrie 

FIGURE 2. Typical form of the perturbed manifolds near a cell boundary. Shaded regions contained 
between the manifolds are mapped as indicated by the arrows : particles in these regions are able 
to change cell on moving upwards from y = 0 to y = 1 .  A similar structure will occur near the 
downwards-moving cell boundaries. 

approaching the fixed point from which it has broken away, the perturbed manifold 
oscillates increasingly rapidly and intersects the other manifold an infinite number 
of times. Since particles are unable to cross these invariant manifolds, areas defined 
by successive intersections of the manifolds (shaded in figure 2) are mapped into each 
other as shown in the figure. Thus particles are able to change cell on moving across 
from one horizontal boundary of the flow to the other. 

The separation of the perturbed manifolds, measured a t  a point (xo, yo) on, and in 
the direction of the normal to, the manifolds of the unperturbed system can be shown 
to be (Guckenheimer & Holmes 1983, pp. 189-190): 

where 

M(yo,to;x0) = ~ ~ ~ V ~ ( x o ( t - t o ) , ~ o ( t - ~ o ) )  A V g ( ~ o ( t - ~ o ) , y o ( t - ~ o ) , t ) d t ,  (2.4) 

is the Melnikov function, and (xO(t), y o ( t ) )  is a ‘heteroclinic’ orbit of the unperturbed 
system (i.e. an orbit lying in the coincident manifolds of the two fixed points) which 
passes through (xo, yo) at t = 0. Here to E LO, T )  is the time on which the Poincark map 
is based, and xo is a passive parameter in d and M, used to define which cell boundary 
is referred to. Although it is common to regard (xo, yo) as fixed and to study the 
variation of the Melnikov function with to alone, we prefer here to retain explicitly 
the variation with yo. Indeed, for clarity, we shall rather regard to as fixed, and study 
the variation of the separation of the manifolds with yo: the two approaches are 
equivalent (Guckenheimer & Holmes, 1983, p. 189). If d(yo, t o ;  xo), through the 



Mixing by chaotic advection i n  spatially periodic flows 7 

Melnikov function, has successive (simple) zeros in yo at yo = yi  and yo = y i+l ,  then 
the perturbed manifolds intersect transversely near ( x ,  y )  = (xo, y i )  and (xo, Y ~ + ~ ) .  The 
area of the region defined by these intersections is then 

where h is the distance measured along the heteroclinic orbit of the unperturbed 
system and yo(t i )  = yt, yo(t i+l)  = yi+l ,  and where we have used 

dhldt = IV1I‘(XO’YO(~))I. 
Since the Poinear4 map is area-preserving, and there is no net flux along the layer, 
we have respectively 

a ( i + 2 ; x 0 )  = a ( i ; x o ) ,  a ( i + l ; x o )  = a ( i ; x o ) .  (2.6) 

Thus all areas a ( i ; x o )  are equal for a given xo. They are independent of the section 
time to ,  and in this case of no net flux can be calculated from (2.5) with ti  and tt+, 
taken to be any two adjacent zeros in to of M .  These expressions for a(i  ; zo) will be 
used to estimate the number of particles changing cell in a given time, and, 
ultimately, a diffusion coefficient for the transport of particles. Rom-Kedar (1989) 
has independently used the same formulation to study the detailed structure of the 
transfer mechanism across the broken vortex boundary. 

In order to move between adjacent cells, particles must visit the neighbourhood of 
the cell boundaries. However, for small enough E ,  many of the closed streamlines of 
the steady flow are preserved (though distorted) in the Poincark section, and 
continue to confine particle paths. These closed, invariant curves are known as KAM 
tori ; particles within a KAM torus are confined indefinitely to the core of the cell, 
away from the boundaries. Thus it is only particles in an outer region, which Rom- 
Kedar (1989) calls the ‘mixing region’, that are free to travel along the layer. As E 

is increased, the mixing region generally grows whilst the inner trapped region 
shrinks until the last KAM torus is destroyed. However, the picture is complicated 
by the possibility of ‘islands’ of trapped particles, and of ‘cantori’ which present 
partial barriers to particle transport appearing and disappearing in the mixing region 
as E is varied. Consequently the size of the mixing region does not necessarily increase 
monotonically, or smoothly. Examples of Poincark maps which illustrate these 
effects in this class of flow can be found in Broomhead & Ryrie (1988), Solomon & 
Gollub (1988), Weiss & Knobloch (1989) and Cox et al. (1990). The presence of cantori 
causes slow leakage of particles between different parts of the mixing region, and can 
profoundly affect the overall transport of particles. It is intimately related to the 
existence of the high-order correlation effects which were discussed in 0 1 : to include 
these effects is beyond the scope of this work and we will thus assume that the mixing 
region is well-defined and does not contain cantori. 

Throughout this section we have assumed free-slip at  the fluid boundaries y = 0 
and y = 1. This ensures that the stagnation points there are hyperbolic, i.e. their 
stability can be determined by linearizing the flow. This is a necessary condition for 
the straightforward application of the results which we have used from the theory of 
dynamical systems. In particular, i t  guarantees the preservation of the stagnation 
points under a small perturbation of the system. However, in many cases of interest 
the boundaries may support no-slip ; then the stagnation points are non-hyperbolic 
and more care is needed. Broomhead & Ryrie (1988) discuss the implications of this 
on the existence of fixed points and manifolds in the perturbed Poincark map. 
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Although the continued existence of non-hyperbolic fixed points under a perturbation 
of the system cannot be guaranteed in general, in this particular class of flows the 
symmetry and the condition of no net flux along the layer limit the class of 
admissible perturbations, and guarantee the continued existence of the saddle points 
and their manifolds, a t  least under ‘small’ perturbations of the basic flow. Moreover, 
numerical studies show no apparent qualitative difference between flows with the 
two types of boundary conditions so that we expect the abovc discussion to apply 
equally well in either case. However, it would be a valuable and interesting extension 
of this work to investigate this point further. 

3. Diffusion properties 
The boundary between adjacent cells in the unperturbed flow is formed from the 

stable and unstable manifolds of the stagnation points. It is convenient to define the 
boundary between cells in the perturbed flow as also lying along manifolds of the 
periodic orbits. Thus we consider the Poincark map based a t  time t = to ,  and select 
a point of intersection of the perturbed manifolds which lies near the centre of the 
layer of fluid. Above this point of intersection, the boundary is taken to lie along the 
manifold of the fixed point a t  the upper fluid surface ; below this point it is taken to 
lie along the manifold of the fixed point on the lower surface of the fluid (see figure 
3, cf. MacKay et al. 1984, figure 11). 

Near the upper and lower surfaces of the fluid, the cell boundary forms an 
impenetrable barrier in the Poincard section, since particlcs are unable to cross the 
manifolds of which i t  is formed. However, near the centre of the layer, particles are 
able to ‘leak’ through by entering the regions marked in figurc 3;  under the action 
of the PoincarG map they are then mapped across the boundary into the neighbouring 
cell. The suffices i a n d j  are used to denote that particles in the region are mapped 
from cell i to cellj under one iteration of the Poincare‘ map. This behaviour is directly 
analogous to the leaking of particles across cantori (the remnants of periodic orbits), 
as described by MacKay et al. (1984): the boundaries of regions are the 
‘turnstiles ’ controlling the escape of particles. 

Consider now the fate of tracer particles being advected by the flow. Then the 
change in the number of particles in cell i during one period of the flow is given by 

Ni(t + T) = Ni(t) +ni-l,i(k) + ni+l,i(t) -ni , i - l ( t )  -ni,i+i(t), (3.1) 
where Ni( t )  is the number of particles in cell i a t  time t ,  and ni,Jt) is the number of 
particles in region I,,j a t  time t. On writing Ni(t) =q+w(t), where is the 
(constant) number of particles in the trapped region of cell i ,  and w(t) the number 
of particles in the mixing region of cell i, we see that Ni( t )  in (3.1) can be replaced by 
v(t). Henceforth we will consider only particles in the mixing regions of the flow. 
Following Meiss (1986), we note that, those particles free to cross the cell boundary 
lie within a stochastic region of the flow, and so quickly forget their past history. We 
will assume here, in order to  obtain a first approximation to the transport problem, 
that particles immediatcly forget their past on crossing a cell boundary, and are 
quickly distributed throughout the mixing region. Then we approximate ni , j ( t )  as 

ni,j(t) = v ( t ) a i , j / A i ?  (3.2) 
where Ai  is the area of the mixing region in cell i, and 
Note that the condition of no net flux along the layer gives 

is the area of region Ii,j. 

a .  . = a .  . 
1 . 3  3 . 2 ‘  
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Cell i 

FIQURE 3. The definition of the cell boundary (solid line) in the perturbed flow. The dashed line 
show the positions of the perturbed manifolds, and the regions the areas of the turnstiles 
through which particles move from one cell to another. 

On substituting for n, ,Jt)  from (3.2) into (3.1), we have 

T ( t + T )  -__ T(') - a i + l , i G l ( t )  (a i , i+ l+ai , i - l )Tt ,  -+-- ai-1 iV-l(t) . (3.3) 
Ai Ai Ai Ai+l Ai Ai Ai 4 - 1  

This is a discrete form of the advection-diffusion equation 

where 

and, depending on whether the first derivatives are defined by 
ccntral differences respectively, 

(3.4) 

(3.5) 

upwind, downwind or 

In general, ai+l, i  $. ai , i - l ,  so that the advection velocity ui is non-zero. This is not 
inconsistent with the condition of no net flux along the layer, since here we are 
considering only the change of particles in cell i. On replacing i by i+ 1 in (3.4)-(3.6), 
and using ai+2,i+l = a,,,-,, we find the equation governing the change of particles in 
cell i + 1. This has an advection velocity ui+l = -A i  ui /Ai+,  in the opposite sense to 
that in cell i ,  so that on average the two may be expected to cancel. The .phenomenon 
is easily understood when we recall that the a$* denote the areas of the turnstiles 
which control the exchange of particles between cells : small turnstiles admit only a 
slow migration of particles and so form 'high' barriers which arc difficult to cross, 
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while large turnstiles form ‘low ’ barriers which particles may cross easily. When 
a,+l, , + ui, successive cell boundaries have alternately large and small turnstiles. 
Particles ‘pile up ’ behind the high barriers (small turnstiles) thereby causing the 
alternating positive and negative advection velocities in adjacent cells. 

Equation (3.4) indicates that on lengthscales much greater than X and timescales 
much greater than T, the transport of particles along the layer is approximately 
governed by an advectiondiffusion equation. However, the inverse problem of 
deriving the value of the diffusion coefficient from the discrete form (3.3) does not 
have a unique solution; we find three possible values of Di,  and three of Di+,, all of 
which are generally different when + ai,t-l and A ,  += A,,,. Therefore we must 
use an alternative method. Following Meiss (1986). we model t.he transport of 
particles by a Markov chain, and calculate the variance of the distribution. In  a 
diffusive process this varies linearly with the number of steps (here the number of 
iterations of the Poincard map, and hence time), the constant of proportionality 
determining the diffusion coefficient. 

Therefore, suppose that during one iteration of the Poincar6 map all particles in 
the mixing region of cell i are equally likely to cross the boundary to cell i+ 1 ,  with 
probability 

This approximation assumes that particles ‘forget ’ thcir previous history after each 
iteration of the Poincard map: it is equivalent to the approximation made in (3.2), 
and to the ‘quasi-linear’ approximation made in early studies of diffusion in the 
standard map. Of course it is not exact, as the work of Rom-Kedar (1989) and Rom- 
Kedar et al. (1990) exemplifies. Nevertheless it allows us to derive a first 
approximation to the diffusion coefficient which, in some cases, is in very good 
agreement with numerically calculated values. 

Pi.i+l = ai,i*l/Ai. (3.7) 

So writing 

(3.8) 

(3.9) 

where a,,, is the Kronecker delta (a,,, = 1 if j = i, = 0 i f j  + i).The distribution 
’1 I after 10 steps is compared with a Gaussian distribution in figure 4 :  part ( b )  clearly 

shows particles ‘piling up’ behind the small turnstiles when (A:p) $: ( 1 , l ) .  
- The variance of the distribution of this process after a fixed number, n, of 

iterations of the map is calculated in the Appendix. For large n, we find 

1 i even 

1 P = Pzr, r+l  = a2r. 2 r + 1 / A 2 r 3  

A = am, 2 r - l / a z r ,  z r + l >  

1~ = A 2 r / A 2 r + 1 9  

the probability of a particle migrating from cell i to cell j in one ‘step’ is 

p .  = (1 - P - ~ P )  a,, i +pa,, i+l  + APSj, i - 1 ,  

( ~ - P P - P A P )  6j,i+pA@j.i+1 + , u P J ~ , , - ~ ,  i odd, h 3  

. 

( ( i - i , , ) z ) n - ( i - i , J ~  - 2DLn as n + m ,  (3.10) 

where 
2p 2A DL = -- 

( 1 + p )  ( 1 + A )  p. 
(3.11) 

Thus particles migrate as if diffusing, with diffusion coefficient DL. This expression for 
the diffusion coefficient (3.1 1)  is dimensionless with respect to the size of the cells, and 
the temporal period of the perturbation: the full dimensional form is 

(3.12) 
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P(i 

I i 
FIGIJRE 4. Distribution of the process described by equation (3.9) after 10 steps (histogram) 
compared with Gaussian distribution (smooth curve). (a) ( A ,  p, p )  = (1, 1, 4); ( b )  (A ,  p,  p )  = ( l i ,  
1, 3. 

Note that (3.11) can be rewritten as 

(&J1 = a(d<,:+l+d,l,-, +db:,,,+d&,t), (3.13) 

where 4 . j  = ai.jlAi* (3.14) 

Thus the inverse of the diffusion coefficient is the mean of the inverses of the 
coefficients found from the difference formulae (3.6). 

Equation (3.12) provides a first approximation to the diffusion coefficient for 
particles located in the mixing region of the flow. We now consider how this 
expression is related to  numerical and experimental measurements of diffusion 
coefficients. First note that particles in the trapped regions cannot diffuse, so that 
the diffusion coefficient there is zero. Thus we see that in a chaotic flow the value of 
the diffusion coefficient may vary in space. Indeed, it is likely that the value of the 
diffusion coefficient varies with position even within the mixing region; then 
expression (3.12) should be interpreted as an approximation to the diffusion 
coefficient averaged over the whole mixing region. Now recall that experimental and 
numerical measurements of diffusion coefficients are often based on spatial averages 
as well, since they normally use ensembles of particles distributed throughout a 
given, regular, region of the flow. Thus the measured diffusion coefficient is in 
practice a spatial average of the coefficients at each point in the region. When the 
measurement region is taken to be one complete wavelength of the flow, the 
measured diffusion coefficient is yD, where y is the proportion of the flow which is 
mixing, i.e. y = (A2,+A2r+l)/Atot, and where A,,, is the total area of the measurement 
region. So, in order to  compare our theory with numerical or experimental results we 
should more correctly consider the quantity yD. 

In  order to estimate -jvD from (3.12) we need to  know values of the quantities 
X, T,Atot and the u ~ , ~ ,  but not of (A2,+A2,.+l). The first three are generally known 
explicitly for a given flow, so that the problem reduces to that of determining the ai,*. 
As we have seen in $2, these areas may be calculated in terms of the Melnikov 
function, through (2.5), provided the perturbation is sufficiently small ; for larger 
perturbations we must resort to numerical measurement. We are now able to explain 
the linear variation of diffusion coefficient with the size of the perturbation which 
was observed both experimentally and numerically by Solomon & Gollub (1988). For 
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small-amplitude perturbations, the u,,, vary linearly with the size of the perturbation 
as indicated in (2 .5 ) .  This implies that yD,, our estimate from (3.12) of the measured 
diffusion coefficient, also varies linearly with the size of the perturbation, in 
agreement with the observations. 

The quantity y is also important in describing the mixing properties of the flow. 
However, a t  present we have no method of estimating its size. This point is discussed 
further in $7.  

It is useful to note that for an ensemble of particles initially distributed evenly 
throughout a whole number of cells, the change in the number of particles in each cell 
after just one period of the flow is exactly represented by the Markov model. It is 
only after further periods of the flow that the correlations effects which we have 
ignored can enter into the problem. Then from (A20) of the Appendix. the mean- 
square displaccmcnt of particles after this one step is 

where A, p and ,u are defined in (3.8), and CT; and CT: are dcfincd in (A 8). But CT; is just 
the probability that a randomly selected particle initially lies in an 'even' cell, and 
CT; the probability that it initially lies in an 'odd' cell, so that for this particular 
ensemble ( g " , , ~ : )  = 0. Thus we find 

( ( i (T) - i (0) )2)  = 2 + -  
( l n ) h  

(3.16) 

When both cells comprising one spatial period of the flow are identical, such as for 
flows invariant under the transformations ( x ,  y. t )  + (x +LJ, y, - t )  or (x ,  y, 1 )  + (-2, 

y , t )  for example, then h = 1. It follows that the diffusion coefficient hDh can be 
calculated numerically by integrating the flow for just one temporal period. This 
provides an alternative to computing the areas ai, j .  Since the mcan-square deviation 
in (3.16) varies only slowly with A,  for h close to 1, this method may also be used to 
provide a rough estimate of yDh for h + 1: the percentage error when h = 2 (or 
equivalently A = +, depending on how the origin of the cells is defined) is 25%. 

In deriving (3.12), we have used the cell index, i ( t ) ,  of each particle, whereas in 
numerical calculations it is often more convenient to use the truc coordinate along 
the layer, z(t).  Thus D,,, = lim, tOO dnUm(t), where 

(3.17) 

and where ( ) denotes an average over the ensemble of sample particles and where 
we assume a 'standard' ensemble or particles initially distributed over one 
wavelength of the flow. It is straighforward to prove that this gives the same result 
as using the index i ( t )  in the limit as t + 00. First note that since there is no net flux 
along the layer, ( x ( t ) - x (0 ) )  = 0 and can be ignorcd in (3.17).  Next, note that we 
may write z(t)  = -si(t)+((t), where ( ( t )  is bounded by the size of the cell. Then 

2tYdnum(t )  = iX"((i(t) - i (0))*)  + x ( ( i ( t ) - i ( O ) )  ( 5 ( t )  -5(0))) + ( ( 5 ( t )  -E(o)) ' ) .  
(3.18) 

The second. correlation term decays to zero for large t ,  whilst the third tcrm is small 
and bounded for all t :  neither contributes to (3.17) as the limit of infinite time is 
approached. Thus the limiting behaviour obtained by using the true particle 
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coordinates will give the same rcsult as that obtained by using only the cell index of 
each particle. This is confirmed by numerical calculations. However, it is clear that 
thc value ydn,,(T) after one period, T ,  of the flow is altered by the presence of the 
two extra terms; it is important to recognize that when ydn,,(T) is used to estimate 
yD$, then the cell index of particles, rather than their absolute coordinate, must be 
used. Numerical computations confirm that ((x(T) -x(O))*) > iX2(( i (T)  -i(0))2) for 
all parameter values investigated. 

We summarize the results of this section as follows. In numerical calculations 
based on an ensemble of particles initially distributed evenly throughout one 
wavelength of the flow, the true diffusion coefficient D satisfies 

= yon,, = limydn,m(t) ; 
t+m 

our estimate of the diffusion coefficient from (3.12) satisfies 

(3.19) 

= ydn,,(T) when h = 1, (3.20) 

provided yd,,,(t) is calculated using the cell index of particles, and not their absolute 
x- coordinate. 

4. More complicated configurations 
The calculations described in 9 3 estimate the longitudinal diffusion coefficient for 

two-dimensional flows subject to a time-periodic perturbation. In practice, however, 
the geomctry of the flow is likely to be more complicated than this idealized 
dcscription. For example, the instability of the basic flow might take the form of a 
perturbation which is periodic in the third spatial coordinate (e.g. wavy instability 
of convection rolls) or the basic flow itself might be three-dimensional (e.g. Taylor 
vortices). These more complicated situations can be studied by applying the general 
principles of the method described in $3. 

When the basic flow is three-dimensional, the stagnation points are replaced by 
one-dimensional curves. The manifolds of these curves, and likewise the boundaries 
between adjacent cells, are two-dimensional surfaces. Then the probability of 
changing cells is governed by the volume contained between intersections of these 
manifolds in the three-dimensional Poincar6 map, and the volume of the mixing region 
of the cells, just as the equivalent areas governed the diffusion in the two-dimensional 
case. In  a rectangular geometry these volumes are infinite, although their ratio is 
finite: we should more rigorously refer to the mean of the corresponding areas on 
cross-sections cutting through the cells. When the velocity is independent of the 
coordinate along the rolls, all such cross-sections are identical, and the problem 
reduces to the two-dimensional case. Note, however, that flows in cylindrical 
geometries, such as the Taylor-vortex flow, should not be reduced to two dimensions 
in this way since the curvature of the problem destroys the area-preservation of the 
'reduced ' two-dimensional flow. This is illustrated in the discussion of numerical 
results in $5. 

When the perturbation is periodic in the coordinate along the roll, z say, time can 
be eliminated to  give a system of two coupled equations. Thus given 

2 = u(z, y, z ) ,  g = v(x ,  y, z ) ,  = 4 2 ,  y, z) ,  
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dx %L du v 
we write 

provided w + 0. Note that although the original three-dimensional flow preserves 
volume, this reduced two-dimensional flow does not, in general, preserve area. A 
Melnikov function can be calculated as in $3:  however, the integral (2.4) must be 
modified to allow for changes in areas, as described by Holmes (1980). This Melnikov 
function describes thc separation of the two-dimensional manifolds in the full, three- 
dimensional, space of the flow. From this, the volume of fluid changing cell whilst 
travelling downstream a distance equal to one period of the perturbation can be 
found. In  this case, the coefficient describes the rate of diffusion with distance along 
the roll rather than with time. This may be of use in particular applications. 
However, when the rate of diffusion with time is of more direct interest, this might 
be estimated by renormalizing by the average speed along the rolls. 

introduced by 
approximation 

The velocity 

5. Comparison with numerical results 
As an example, we consider the model of cylinder waves in Taylor-vortex flow 

Broomhead & Rvrie (1988). We evaluate the expression for our 
to the diffusion coefficient, and compare this with numerical results. 
field of the flow is 

x ( r + $ ) ( r - $ )  + =  cos (xz), 
R+r 

B 
O = A + -  

(R + r ) 2 '  

2r 
R+r 

i=-- sin (xz) - E sin (wt )  

in cylindrical polar coordinates, where r e  [ -;,;I, OE [ 0 , 2 x ) ,  ZE ( -  co, + co). The 
parameter R is the mean radius of the cylinders, which have true radii (R-$) and 
( R + i ) .  In the unperturbed flow, E = 0, particles are confined to surfaces of constant 
$(r ,  z )  = ( r + t )  ( r - t )  sin (RZ). Curves of constant $(r ,  z )  are shown in figure 5 .  The 
vortex boundaries lie a t  z = n (integer n), and the Melnikov function a t  the boundary 
is, following Broomhead & Ryrie (1988): 

where I ,  = z r z r ( l + a ) f ( l + p ) / r ( 3 + o l + p ) ,  

( -  l)"+'iw(R-i) (-l)"iw(R+;) 
x and 4 = arg(1,), a = , p =  , x 

I n  fact 

(5.3) 
4x4R2 6J(R-i) w(R+$)  sinh(w) 

= (4x2+w2) (x2+w2)sinh[w(R-+)]sinh[w(R+~)] w ' 

independent of n : the Melnikov function is the same at all boundaries, apart from a 
change of sign. This is a direct consequence of the invariance of (5.1) under 
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z = l  

z = o  

Z = - l  

I r = + i  = -- 

FIGURE 5. Curves of constant ~ ( r ,  z )  = (r+f)(r-f) sin ( x z ) ,  i.e. intersections with 0 = constant of 
invariant surfaces for the model Taylor-vortex flow with e = 0. 

the transformation ( r ,  8, z,  t) --f ( r ,  -8, z+ n, - t). Note that this invariance implies 
that  both cells have identical structures, so that the Markov model predicts 
yoM = yd,,,(T) as discussed in $3. 

The volume of fluid crossing the cell boundary near z = n during one period of the 
flow is then 

where rol and ro2 are successive zeros in T,  of Mn(ro, t o ) .  Thus 

(5.4) 
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where t,, and t , ,  + R / W  are successive zeros in t, ofM,(ro, t,). It follows from (3.12) that 
our estimate of the diffusion coefficient for this flow is 

(5 .5)  

where Vmix is the volume of cells n and (n+ 1 )  in which the flow is chaotic. Writing 
Vmix = y4xR, where y is the proportion of the flow which is chaotic, we have 

141 I D - --"-+O(e2) as E+O. 
, - y n R  

For the parameter values o = $, R = 5 we find IInl = 3.9 and predict yDM = 
0 . 2 5 ~ +  O ( 2 ) .  Broomhead & Ryrie (1988) found yD numerically for these parameter 
values by computing yd,,,(t) = ( ( z ( t )  - z (0) ) ' ) /2 t  for an ensemble of particles 
initially distributed evenly in the plane 0 = 0, with r E [ -;, i], z E [ - 1,1]. Thus they 
essentially treated the problem of diffusion in the ( r ,  z)-plane. However, the flow in 
this decoupled system is not area-preserving, as discussed in $ 4 : a more appropriate 
ensemble for our purposes would be one comprising particles evenly distributed 
throughout the entire volume of fluid, or, equivalently, distributed in ( r ,  2)-space 
with density p ( r )  cc ( R + r ) .  We might expect the effects of this discrepancy to be 
small, particularly for large R, and continue with the comparison. 

Broomhead & Ryrie identified three distinct regions in the graph of yd,,,(t). 

(i) 0 < t < t o :  yd,,,(t) cc t .  This is the deterministic regime in which particles 
retain memory of their past history. Typically they found t, x $T. 

(ii) t ,  < t < t,: yd,,,(t) falls rapidly to a minimum of D ,  then may oscillate close 
to this value. The value oft, varied considerably with the parameters of the flow, and 
in particular with E ,  so that no consistent trend was apparent. However, the 
minimum, D ,  was normally achieved at a time t x T ,  so that it is consistent with 
their results to interpret as yd,,,(T). We choose to do this henceforth since 
the significance of this quantity is then more apparent. Note, however, that their 
computations used the z-coordinate rather than cell index of each particle, so we 
expect yd,,,(T) to be consistently larger than yD,  as discussed in $3. 

(iii) t > t,  : yd,,,(t) may increase or decrease to a limiting value yDnum (which may 
be equal to yd,,,(T)), or may increase without limit. This latter behaviour is likely 
to be due to the presence of 'accelerator modes' such as those found in the standard 
map (cf. Lichtenberg & Lieberman 1983). 

Figure 6 shows our theoretical result for yD,  (equation (5.6)) superposed on the 
graph of yd,,,(T) and yD,,, versus E ,  reproduced from figure 15 of Broomhead & 
Ryrie (1988). New results of yd,,,(T) based on the correct initial distribution 
of 10000 particles, and using the cell index are also shown. The behaviour of 
yDnum is complicated and does not agree wcll with the theory over most of the range 
0 < E < 0.1. However, for E < 0.01, yD,,, = yd,,,(T), and the agreement is good. In 
addition, the agreement between yd,,,(T) and the theory is reasonable over the 
entire range, as we would expect from the discussion a t  the end of $3. 

The computations were repeated for parameter values o = a,B = 2, and with 
the correct distribution of particles in the ( r ,  2)-plane : 5120 particles were used for 
long-timescale computations of y and Dnum, whilst 10240 were used for the 
short-time computations of yd,,,(T). For these parameter values we predict 
yDM = O.32e+0(e2)  as s+O. This time the function yd,,,(t) = X2( ( i ( t ) - i (0 ) ) ' ) /8 t ,  
where i denotes the cell occupied by the particle, was computed. In  some cases we 
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FIGURE 6. Numerical results for yd,,,(T) ( x ) and yD,,, = lim yd,,,(t) (0) versus E ,  reproduced 

from figure 15 of Broomhead & Ryrie (1988), for the model Taylor-vortex flow with o = $, R = 5. 
Also shown is yd,,,(T) (*) computed using the cell index of particles, and for the correct initial 
distribution of 10240 particles. The dashed line shows the value y D  = 0.256 predicted by our 
analytical model. 

E 

t-10 

found that d,,,(t) remained close to d,,,(T) for a short time (5 6T), whilst in others 
i t  immediately increased. The results are shown in figure 7 ( a ) ,  where y& = 0.32a, 
yd,,,(T) and yD,,, are plotted against e. For e < 0.015, yd,,,,(T) is close t o  0.326 
as expected ; however, for e > 0.015, d,,,(T) diverges from this linear approximation, 
indicating that the Melnikov function does not accurately measure the distance 
between the perturbed manifolds there. The behaviour of YO,,, is again complicated, 
though the underlying trend is oscillatory; for values of e close to multiples of 0.007, 
yo,,, was not always defined, owing to the presence of accelerator modes. For small 
E ,  yD,,, is consistently larger than yd,,,(T) : however, for e > 0.07, ydnum(T) and 
yD,,, agree quite closely, indicating that the Markov formulation is a good 
approximation there. It is interesting to  note that a t  these larger values of E no 
accelerator modes were observed. This behaviour is similar to  that observed in the 
standard map (cf. Lichtenberg &, Lieberman 1983), where the oscillations in the 
diffusion coefficient decay as the parameter K is increased, tending to  the quasi-1i:iear 
rcsult as K --f 00. 

The proportion of the flow which is chaotic, y ,  is shown in figure 7 ( b ) .  For 
e < 0.065, y K E P  where p x 0.65: if we limit E to E < 0.030 a rather better fit gives 
p x 0.67. At B w 0.065 there is a sudden increase in the slope of the graph of y versus c.  
This corresponds to  the graph of yO,,, saturating to an approximately constant 
value. The net effect is that  the diffusion coefficient, Dnum, increases, initially as e0.33 
and then more slowly, to  a maximum a t  E x 0.065, and thereafter decreases. 

The accuracy of our numerical results was checked by computing yd,,,(t) for ten 
different (randomly selected) sets of 1023 particles, with E = 0.1 and 0.05. From these 
results the function yd,,,(t) for any set of n x 1023 (n = 1,2 ,  ... , lo )  particles 
could be reconstructed, thus allowing the effects of altering the total number of 
particles, and the initial positions for a given number of particles, to be tested. We 
found that the estimates of yU,,, for the ten sets of 1023 particles had a standard 
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FIGURE 7.  (a)  Numerical results for yd,,,(T) ( x , 10240 particles) and yD,,, = lim yd,,,(T) (0, 
5120 particles) versus E for the model Taylor-vortex flow with w = 4, R = 2. Vertical bars denote 
the presence of accelerator modes. The dashed line shows the value y& = 0.326 predicted by the 
analytical model together with the Melnikov estimate of the ui,,. At E = 0.05 and E = 0.10, two 
values of yD,,,, computed using different sets of initial conditions, are shown to indicate the 
expected size of numerical errors. ( b )  Proportion of the flow, y ,  which is chaotic (calculated using 
5120 particles) versus E.  Kote the sudden change in slope near E = 0.065. 

t+m 
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deviation of 7 YO of their mean at  E = 0.1 and 9% at E = 0.05; the estimates for 
different sets of 2046 particles had a standard deviation of 5% of their mean value 
at  E = 0.1 and 7% at E = 0.05. The estimates of y had lower standard deviations of 
around 5 YO for 1023 particles and 3 YO for 2046 particles, for both values of E .  In both 
cases the results appeared to have converged for n = 6, i.e. for sets of 6138 particles. 
Thus we may be reasonably confident of the accuracy of the results shown in figure 
7 (a ) ,  computed using 5120 particles : some indication of the size of the errors there 
is given by plotting yD,,, and y for two different sets of initial conditions at E = 0.05 
and 0.10. 

6. Flows with non-zero net flux 
The Markov model described in $3 can be generalized to situations in which there 

is a net flux of fluid along the layer. Thus following (3.9) we may define the 
probability of a particle migrating from cell i to cell j in one ‘step’ as 

(1-~-6)6~, ,+as~, ,+,+bs~, ,_ , ,  i even 
(6.1) 

for some a ,  b ,  c ,  d ,  E [0,1] such that (a+b) E [0, 11 and ( c+d)  E [0,1]. The model of $3 
can be regained by setting a = p, b = Ap, c = pAp and d = pp. In order to satisfy the 
condition of incompressibility of the fluid we require 

c - d )  8j, 1 + CC$, 1+, + dsj,+,, i odd GJ = {(1 - 

p(a+b) = ( c+d) ,  (6.2) 

4 ccpa-d = c-pb .  (6.3) 

where p = A2r/Alr+l as in $3:  the net flux of fluid along the layer is 

The averages (i),, (ii,,),, and (iz)>, are most easily calculated by using a matrix 
notation to calculate 

(6.4) 

where pi” is the probability of a particle being in state i after n steps of the Markov 
process (cf. Appendix). Then we find 

ZO,+l = AIO,, 
ZA+l = AI;  +BIO,, 
I“,l = AI; + 2BIk + CIO,, 

where 

l - a - b  c+d 0 c-d 0 c+d 
’ = (  a+b I - c - d ) ’  B = ( a - b  0 ) ’  ‘ = ( a + b  0 ) ;  

the averages are given by 

<i), = (1 1) I:,  (i”,, = (1 1)Ii .  

Solution of (6.5) and (6.6) yields expressions of the form 
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and 

for some complicated expressions a, p and y ,  and where f = 1 - (a  + b + c + d )  E [ - 1, 
13. Therefore, ignoring the trivial case 6 = 1 (a  = b = c = d = 0) and the special case 
E = - l ,  we find 

y ( a , b , c , d )  n as n-tco. 1 2 ( ~ ~ - b d )  
( ( i - ( - , )2 )n - ( i - io ) i  'V 

a+b+c+d 
(6.9) 

Equation (6.9) is also valid when 6 = - 1 ,  since then a+ b = c + d  = 1,  ,U = 1 and 
a-  b = c -d  ; moreover, for a ,  b, c, d satisfying these constraints a(a, 6 ,  c, d ,  f")  is in- 
dependent of 5". 

Equation (6.9) predicts diffusive-like transport, but no anomalous diffusion. The 
effect of including a net flux of particles in the Markov model is merely to  sweep the 
spreading cloud downstream a t  a constant rate; the nature of the dispersion of the 
cloud is unaffected. Therefore the Markov model alone is unable to explain the 
anomalous diffusion observed by Weiss & Knobloch (1989) and Cox et al. (1990). 
However, the flows studied by Weiss & Knobloch and Cox et al. have an important 
property which is absent from the Markov model. This is the presence of shear in the 
main stream : indeed it is difficult to conceive of any flow of interest which does not 
exhibit shear in the main stream. By contrast the Markov model represents a flow in 
which the net flux is due to a uniform stream. This suggests that i t  is the shear in the 
flow, rather than the net flux itself, which is responsible for the anomalous diffusion. 
This association of cause and effect was suggested in the work of both Weiss & 
Knobloch and Cox et al.: the results from the generalized Markov model further 
support this hypothesis. 

It is interesting to  consider in this context, also, the effect caused by the presence 
of accelerator modes in flows with zero net flux. As discussed previously, it is likely 
that the singularities observed in numerical calculations of the diffusion coefficient 
are due to presence of these modes causing streaming, rather than diffusing, of some 
particles (cf. Lichtenberg & Lieberman 1983; Broomhead & Ryrie 1988; Weiss & 
Knobloch 1989). A particle caught in an accelerator mode moves continuously along 
the layer a t  a constant rate. Thus a single accelerator mode, or a number of 
accelerator modes with the same velocity, is equivalent to the presence of a uniform 
net flow ; as such it is unable to produce anomalous diffusion, and hence singularities 
in the graph of the diffusion coefficient. To further understand this property, consider 
a transformation which brings to rest those particles moving in the accelerator 
mode(s). Since the position of these particles does not change they are unable to 
contribute of a diffusion coefficient. The remaining cloud of particles is swept along 
at a constant rate in this new frame of reference ; the transformation does not affect 
the dispersion properties of the cloud, or any diffusion coefficient. However, the 
presence of a number of accelerator modes of different speeds is equivalent to the 
presence of a net flux with shear in the mean flow. In this case i t  is not possible to 
define a transformation which brings to  rest all particles trapped in the accelerator 
modes. The net effect is that  the diffusion coefficient receives a contribution from the 
dispersing cloud, which will tend to  a constant a t  large times, and a contribution 
from the streaming particles which increases without limit. Thus we observe 
anomalous diffusion, and singularities in a graph of the diffusion Coefficient. It is 
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unlikely that accelerator modes will occur individually, so that in practice their 
presence will always lead to anomalous diffusion. This is certainly the case in the 
standard map, where accelerator modes with all integer multiples of the basic 
velocity are possible (cf. Lichtenberg & Lieberman 1983, p. 221); and in fluid flows 
at least two accelerator modes acting in opposite directions are necessary to preserve 
a condition of no net flux. 

7. Conclusions 
We have investigated transport by chaotic advection in a general class of spatially 

periodic flows. Under the approximation that particles in the chaotic region are 
uncorrelated with their past history, we have shown that the density of test particles 
obeys a discrete advection4iffusion equation. In addition, by modelling the 
transport process by a Markov chain we have been able to derive an analytic 
approximation for the diffusion coefficient. The mechanism for diffusion is the 
interchange of fluid between vortices through the turnstiles in the cell boundaries. 
The expression derived for the diffusion coefficient depends upon the area (or 
volume) of the ‘lobes’ enclosed by the turnstiles, and the proportion of the domain 
of the flow which is chaotic. 

The numerical results discussed in $5 give some indication of the validity of the 
approximations used in our model. When the size, E ,  of the perturbation from the 
basic integrable flow is small, accelerator modes may be present so that correlation 
effects are important. Then a graph of the true value of the diffusion coefficient 
versus E may show large-scale oscillations about our approximate analytic result. In 
this region our simple model can at  best be expected to give only an order of 
magnitude estimate of the diffusion coefficient. An exception appears to  occur a t  
particularly small values of E ,  before the first accelerator modes occur; then our 
predicted linear variation, with E ,  of the spatially averaged diffusion coefficient 
agrees well with numerical and experimental observations. 

For larger values of E ,  there is some evidence that correlation effects become less 
important; it is in this region that the Markov model is most accurate. This is 
demonstrated by the agreement between yDM = yd,,,(T) and yDnum when E > 0.07 
in figure 7 ( a ) .  Similar behaviour is observed in the standard map, where measured 
values of the diffusion coefficient approach the quasi-linear result as the parameter 
K (equivalent to our parameter E )  increases towards infinity. Moreover, similar 
behaviour is indicated in flow around an oscillating vortex pair (Rom-Kedar 1989) ; 
numerical results suggest that the probability of escape from the vortex becomes 
constant with time when the amplitude of the unsteady component of the flow is 
increased (indirectly through the period of the flow) beyond a critical value. 

We expect, then, that the Markov model is most accurate when the flow is not close 
to integrable. Further investigation is needed to clarify whether this is indeed so, and 
the reasons for it. It would be interesting in this context to compute autocorrelation 
functions x ( t ) x ( t + ~ )  (where the bar denotes an average over time, t )  for particle 
paths, and to test whether the rate of decay of these functions, in comparison with 
the temporal period of the flow, is indeed important in governing the accuracy of the 
model, as suggested in $ 1.  It would also be interesting to  compute such quantities as 
Lyapunov exponents (cf. Lichtenberg & Lieberman 1983, p. 262). These govern the 
rate of divergence of nearby particle paths, and as such could be expected to be 
related to diffusion coefficients, though probably not in a simple manner. Note that 
a relationship between Lyapunov exponents and the rate of decay of autocorrelation 
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(b) 

FIQURE 8. Part of the perturbed manifolds near z = 0 for the model Taylor-vortex flow. (a )  
o = i, R = 20, E = 0.1; the vortex spins slowly, and the lobes have a simple shape. ( b )  w = i, 
R = 2, E = 0.05; the vortex spins rapidly, since R is small and hence lil and jil large. The manifolds 
are swept around the vortex before intersecting a second time. Hence the lobes have a complicated 
shape, and their area cannot easily be computed. 

functions has already been demonstrated for one- and two-dimensional maps (Badii 
et al. 1988). 

The Markov model has enabled us to  demonstrate how diffusion-like transport can 
arise in chaotically advecting flows. It has also shown, along with the work of Rom- 
Kedar (1989) and Rom-Kedar et al. (1990), that the areas of the turnstiles in the cell 
boundaries are important in determining the rate of mixing in the fluid ; moreover it 
has provided a simple approximation for the diffusion coefficient which explains 
some features of numerical and experimental observations. However, its usefulness 
in predicting the diffusion coefficient in practical situations is limited by the 
difficulties of calculating the areas ai,, of the turnstiles, and the proportion y of the 
flow which is mixing. These difficulties are not a particular feature of our model, but 
are likely to occur in any theory of diffusion in these flows. We consider separately 
the different quantities. 

The calculation of the ai,, was discussed briefly in $3.  For a known flow, and for 
E sufficiently small, the a,,, can be calculated in terms of the Melnikov function a t  the 
appropriate cell boundary. However, for larger E the Melnikov function no longer 
provides an accurate approximation of the distance between the perturbed 
manifolds, and higher-order terms must be included in the series expansion. In  
general it is a non-trivial problem to carry out this extension analytically, and 
numerical methods of calculating the areas might be preferred. It is straightforward 
to compute the positions of the perturbed manifolds, and hence the areas ai,,, in cases 
where the shape of the lobes Ii,, is simple (e.g. for the model of Taylor-vortex flow 
with parameters w = a, R = 20 and e = 0.1 as shown in figure 8a) .  However, in other 
cases the shape of the lobes may be quite complicated ; figure 8 ( b )  shows an example 
where the lobe is wound round the rapidly spinning vortex, making any numerical 
calculation of its area quite difficult. 

When numerical methods must be used it is often easier to calculate the quantity 
yd,,,(T) rather than the ai,, as discussed in $3.  Then for flow with special symmetries 
such that h = 1, yd,,,(T) = yoM. Of course care must be taken to ensure that the 
ensemble used is sufficiently large to give an accurate result. 
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The calculation of y is even more problematical. In general there is no analytic 
method of calculating this quantity. Moreover, numerical calculations require that 
the paths of large numbers of particles be computed for large times, in order to 
distinguish between particles that are free to move along the layer and those that 
remain trapped indefinitely in the cores of the cells; this is computationally 
expensive ! The exception in which this problem does not arise is when E is sufficiently 
large that the entire flow is mixing, and y E 1. Of course, as we discussed in $3, it is 
sometimes more appropriate to consider the spatial average, over the entire flow, of 
the diffusion coefficient, i.e. the quantity yD rather than D .  However, this does not 
avoid the need to calculate y ,  since a knowledge of D or yD alone is not sufficient to 
completely characterize the mixing of the flow. In order to do this it is necessary to 
know both the proportion of the flow that is mixing, and the rate at  which this 
mixing occurs. Thus y and D must both be provided by any complete theory of 
mixing, since they separately provide important, and distinct measures of the 
mixing. 

and 
for y does not appear to be feasible. A more tractable problem might be to include 
correlation effects, which are the main source of inaccuracy of the Markov model. 
The transport of the particles depends not only on the areas of individual lobes, but 
upon the 'tangible dynamics' of lobes, that is, upon the way lobes intersect one 
another (Rom-Kedar 1989 and Rom-Kedar et al. 1990). To include these effects in 
calculations of diffusion coefficients is also a non-trivial extension of the work 
reported here, and would greatly increase the complexity of the problem. 

Throughout this study we have been concerned with the motion of ideal fluid 
particles, and hence the mixing within a homogeneous fluid. It is important to realize 
that in some situations additional effects should be taken into consideration. For 
example, when the particles have a finite size, such as in the transport of sediments 
and some pollutants, they move relative to the fluid ; or molecular diffusion might be 
present, such as in the dispersion of a solute or the mixing of two fluids. The different 
velocity experienced by particles of a finite size might cause them to follow paths 
quite different from those of the fluid particles, and dissipation effects are likely to 
lead to the presence of attracting solutions in the phase space. The effects of 
molecular diffusion are likely to be less dramatic, however, since in most cases the 
mixing by chaotic advection is expected to occur on a much faster timescale (Cox 
et al. 1990). 

At  present, an improvement of our theory by obtaining expressions for the 
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in the Taylor-vortex flow : they provided the basis from which this work has evolved. 
Also, I would like to thank Professor P. G. Drazin for much advice and 
encouragement and Dr E. J. Collins €or useful discussions. This work was supported 
financially by SERC. 

Appendix. Calculation of moments in the Markov model 

which the probability of changing from state i to state j, esj, is 
The longitudinal transport of particles was modelled by a Markov process, in 

i even 
(A 1) 

'@j, G1-k (' - P A  ' p )  ' 5 ,  I +Pa,, . 1 + 1 9  

ppaj, 1-1 + (1 - p p - p ~ p )  sj, i +p~pa j ,  
P. ={ '*' i odd. 

(An introduction to Markov processes, and their relationship to diffusion processes 
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can be found in, for example, Cox & Miller 1965.) Consider a single particle, and 
denote the probability of it being in state i after n steps by p r .  Then after n + 1 steps, 

(A 2) 
P?' = ( 1  -P - AP) Pir  + PPP!r+l+ 

~ 2 r + 1 -  (1  -PP-PAP) P t r + l +  A P P ~ ~ + ,  + PPL J n+l - 

Hence the expected value of im after n steps is 

( i m ) n  = Z i m p : ,  
i 

and after n + 1 steps is 

= (i"), + p  x [A(%- 1)" + ( 2 r  + - ( 1  + A )  (2r)"]p!& 
r 

+ p p x  [ ( Z T - ) ~  +A(%+ 2 ) m -  ( 1  + A )  ( 2 r +  1)"]p&.+,. (A 4) 
r 

The recurrence relations (A 2 )  and (A 4) can be used to calculate explicit expressions 
for the expected values, as follows. 

where 

On substituting (A 7) into (A 5) and solving the recurrence relation we find 

(A 9) 

where P = [ 1  - - P ( l + A )  (1  + P I ] .  (A 10) 

1 -P" 
( Q n  = ( i ) "+p( l -A)-  1 - p  ( 4 - P 4 >  

In the limit as n+ 00, the expected value of i converges to 
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From (A 2) 

C [23F1+~~zntf;llI = C b ; r + ~ ~ ! r + l I - ~ ( l + A )  ( 1 - ~ u ) Z b ) Z n , - ~ ~ Z n r + l I .  (A 13) 
7 r r 

On substituting from (A 7) and solving the recurrence relation we find, on using 
g:+g: = 1 ,  

2 p  4hp n + y -  1-p” 
( i 2 ) > ,  = ( i2)o+--  

l+pl+h 1 - p ’  

where y = p( 1 + A )  - 1-P (g: -pc:) + 2p( 1 - A )  (v; -pa:) + 2pp2 ~ (A 18) 
1 + P  1 - P  

It is best to eliminate ( i 2 ) ,  by calculating ( ( i - i o ) 2 ) ,  where i ,  is the initial value of i 
for a given orbit. Then since 

(A 19) 
1 -p” 
1-P 

( i io )> ,  = ( i ~ ) + p ( l - A ) - ( a ~ - p u a ~ ) ,  

( ( i  - i o )2 )n  = (i2>>, - 2<ii,),  + ( i i )> ,  

l + p l + A  
=-- 2p 2h 2Pn + Y ’ m  1-p” 3 

where y’=y-2p( l -A)(cr i -pua;) .  Thus ( ( i - - i0)2) , -2D’n as n+m: we have a 
diffusion process with coefficient D = p2p( 1 +,u)-l2A( 1 + A)-1. 
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